A/pha 45C

Alpha 45C

Three Phase Energy Meter - Counter Type Installation \& Operating Instructions

Section	Contents
1.	Introduction
2.	LED Indications
3.	CT Ratio setting using Thumbwheel 3.1 Programming and Lock mode
4.	Pulse Output (Relay)
5.	Instalation
	5.1 Case Dimensions and Panel Cut-out 5.2 Wiring 5.3 Fusing 5.4 Earth / Ground Connections

${ }_{5.4}^{5.3}$ Fusing Earth $/$ Ground Connections
Connection Diagrams
Specification
Connection for Pulse Output.

1. Introduction

Alpha 45 C is $96 \mathrm{~mm} \times 96 \mathrm{~mm}$ panel mounted kilowatt hour meter it measures
active energy to class 1.0 accuracy with 7 difitit auto-resetting electro-mechanical counte active energy to class 1.0 accuracy with 7 digit auto-reseting electro-mechan
The unit rovides LED indication for healthy phase $\&$ load reverse current

Front View of Meter

Alpha 45C	
von IRov	
	kW.h

Features:

Available in 3 Phase 4 Wire \& 3 Phase 3 Wire configuration.

True RMS Measurement.
7 Digit auto resetrable
7 Digit auto resettable electro-mechanical counter
Fully programmable CT Ratios by Thumb wheel switch at rear of meter
Fully isolated current input.
Pulse Output: One potential free relay contact.
A) Three Phase Voltage status (VON)

LED	status	CONDITION
vR	Green LED (Steady)	R - Phase Present
	Green LED OFF	R-Phase Absent
	$\begin{aligned} & \text { Green LED } \\ & \text { (Flashing) } \\ & \hline \end{aligned}$	Phase Sequence Error
vy	$\begin{aligned} & \text { Green LED } \\ & \text { (Steady) } \end{aligned}$	γ - Phase Present
	$\underset{\text { Green LED }}{\substack{\text { Gree }}}$	Y - Phase Absent
	$\begin{gathered} \text { Green LED } \\ \text { (Flashing) } \\ \hline \end{gathered}$	Phase Sequence Error
vв	$\begin{aligned} & \text { Green LED } \\ & \text { (Steady) } \end{aligned}$	B - Phase Present
	$\begin{aligned} & \text { Grenen LED } \\ & \text { OFF } \end{aligned}$	B - Phase Absent
	Green LED ON (Flashing)	Phase Sequence Error

B) Reverse connected Current Transformers (I Rev) (Import/Export Connection)		
LED	Status	CONDITION
IR	$\begin{aligned} & \text { Red LED } \\ & { }_{N}^{2} \end{aligned}$	CT Connection reversed for ' R ' Phase For measurement of Export Energy.
	$\begin{aligned} & \text { Red LED } \\ & \text { OFFF } \end{aligned}$	CT Connection correct for ' R ' Phase For measurement of Import Energy.
ir	$\operatorname{Red}_{\mathrm{ON}}^{\mathrm{N}}$	$C T$ Connection reversed for ' Y ' Phase For measurement of Export Energy.
	$\begin{aligned} & \text { Red LED } \\ & \text { OFF } \end{aligned}$	CT Connection correct for ' γ ' Phase For measurement of Import Energy.
IB	$\begin{aligned} & \text { Red LED } \\ & \text { ON } \end{aligned}$	CT Connection reversed for ' B ' Phase For measurement of Export Energy.
	$\begin{aligned} & \text { Red LED } \\ & \text { OFF } \end{aligned}$	CT Connection correct for 'B' Phase For measurement of Import Energy.

Note : Meter will correctly record Energy in both the direction Import as well as Export connection.
C) Impulse LED

LED	STATUS	CONDITION
3200 implkWh $\begin{array}{l}\text { Flashing } \\ \text { RED } \\ \text { RED }\end{array}$	$\begin{array}{l}\text { RED LED Flashes at a rate proportional to the } \\ \text { measured power (flashing rate }=3200\end{array}$	

Note : $: \begin{aligned} & \text { Impulse LED Flashing rate has been fixed at } 3200 \mathrm{imp} / \mathrm{kWh} \\ & \text { with different CT ratio setting, impulse rate will remain same }\end{aligned}$
D) Scaling LED

LED	STATUS	CONDITION
0.01	Red LED	With " X 0.01 " RED LED ON, user has a resolution of 0.01 kWh (Display reading $X 0.01$)
0.1	$\begin{aligned} & \text { Red LED } \\ & \text { ON } \end{aligned}$	With " X 0.1 " RED LED ON, user has a resolution of 0.1 kWh (Display reading X 0.1)
10	$\begin{aligned} & \text { Red LED } \\ & \text { ON } \end{aligned}$	With " X 10" RED LED ON, user has a resolution of 10 kWh (Display reading X 10)

3. CT Ratio setting using Thumbwheel

3.1 Programming and Lock mode

The Alpha $45 C$ comes with standard CT ratio setting, if not Specified by the customer. Front View of Alpha 45C after removal of Black frame \& Front Glass.

User can set the CT ratio using the Thumbwhel (4 digit) provided
on rear side of meter. Thumbwheel

\section*{| 3 | 3 | 3 | 3 |
| :--- | :--- | :--- | :--- |
| | | | |}

Each digit of thumbwheel having two switches (+) \& ($(-)$ User can increment the number from 0 to 9 using (+) switch or dcrement the number from 9 to 0 using $(-)$ switch.
The CT ratio can be set to any value between 0005 to 9999 for 5 A or
 by removing glack frame, then heck the Jumper position. Intitialy the
Jumper position is in Lock mode (Factory semting)

3) Then Swith OFF the meter put the Jumper in Normal mode (Lock mode) and again
switch ON the meter. Now the meter is ready to use with set CT ratio.
Note : Once user sets CT ratio \& puts jumper in Normal mode (Lock mode), Meter will
not accept any change in thumbuher seting. If ser changes the thumbwheil not accept any change in thumbwel seting. If user changes the th
setting in lock mode, ast set CT Tratio when iumper position was in

Table 1 : Standard CT Ratios examples for 5 A

CT Ratio	Thumbwheel	Multiplier	Impuls $/$ KWh for
Pulse output (Relay $)$			
$1 / 5 \mathrm{~A}$	0001	0.01	100
$2 / 5 \mathrm{~A}$	0002	0.01	100
$3 / 5 \mathrm{~A}$	0003	0.01	100
$4 / 5 \mathrm{~A}$	0004	0.01	100
$5 / 5 \mathrm{~A}$	0005	0.01	100
$10 / 5 \mathrm{~A}$	0010	0.1	10
$20 / 5 \mathrm{~A}$	0020	0.1	10
$30 / 5 \mathrm{~A}$	0030	0.1	10
$40 / 5 \mathrm{~A}$	0040	0.1	10
$50 / 5 \mathrm{~A}$	0050	0.1	10
$60 / 5 \mathrm{~A}$	0060	0.1	10
$75 / 5 \mathrm{~A}$	0075	0.1	10
$100 / 5 \mathrm{~A}$	0100	1	1
$150 / 5 \mathrm{~A}$	0150	1	1
$200 / 5 \mathrm{~A}$	0200	1	1
$250 / 5 \mathrm{~A}$	0250	1	1
$300 / 5 \mathrm{~A}$	0300	1	1
$400 / 5 \mathrm{~A}$	0400	1	1
500 A	0500	1	1
$600 / 5 \mathrm{~A}$	0600	1	1
$800 / 5 \mathrm{~A}$	0800	1	1
$100 / 5 \mathrm{~A}$	1000	10	0.1
$1200 / 5 \mathrm{~A}$	1200	10	0.1
$1250 / 5 \mathrm{~A}$	1250	10	0.1
$1500 / 5 \mathrm{~A}$	1500	10	0.1
$1600 / 5 \mathrm{~A}$	1600	10	0.1
$2000 / 5 \mathrm{~A}$	2000	10	0.1
$3200 / 5 \mathrm{~A}$	3200	10	0.1
$5000 / 5 \mathrm{~A}$	5000	10	0.1

Note If set CT ratio is less sthan 0005, the meter automatically
set at the default ratio 0005 .
Table 2 : Standard CT Ratios examples for 1 A

CT Ratio	Thumbwheel	Multiplier	Impulse / kWh for Pulse Output (Relay)
1/1A	0001	0.01	100
2/1A	0002	0.01	100
3/1A	0003	0.01	100
4/1A	0004	0.01	100
$5 / 1 \mathrm{~A}$	0005	0.01	100
10/1A	0010	0.1	10
20/1A	0020	0.1	10
$30 / 1 \mathrm{~A}$	0030	0.1	10
40/1A	0040	0.1	10
$50 / 1 \mathrm{~A}$	0050	0.1	10
$60 / 1 \mathrm{~A}$	0060	0.1	10
75/1A	0075	0.1	10
$100 / 1 \mathrm{~A}$	0100	1	1
150/1A	0150	1	1
$200 / 1 \mathrm{~A}$	0200	1	1
250/1A	0250	1	1
$300 / 1 \mathrm{~A}$	0300	1	1
$400 / 1 \mathrm{~A}$	0400	1	1
$500 / 1 \mathrm{~A}$	0500	1	1
$600 / 1 \mathrm{~A}$	0600	1	1
$800 / 1 \mathrm{~A}$	0800	1	1
1000/1A	1000	10	0.1
1200/1A	1200	10	0.1
1250/1A	1250	10	0.1
1500/1A	1500	10	0.1
$1600 / 1 \mathrm{~A}$	1600	10	0.1
2000/1A	2000	10	0.1
$3200 / 1 \mathrm{~A}$	3200	10	0.1
5000 / 1A	5000	10	0.1

4. Pulse Output (Relay):
 Impulsesk $k W$ of pulse output will be same as the Mechanical counter output
refer "Table $1:$ Standard CT Ratios" for impulses $/ \mathrm{kWh}$ on pulse output. refer "Table $1:$ Standard $C T$ Ratios" for impulses
Impulses $/ \mathrm{kWh}$ will be scaled according to CT ratio.

5. Installation

Mounting is by four side clamps, slide the side clamps through side slot till side clamp gets firmplys, cokeded in a groove (Refeff figi.). Consideration
should be given to the spac required behind the instrument to allow for
bends in the

The A/pha 45 C should be mounted in a reasonababy stable ambient
temperature and where the operating temperature is within the range 0 to $55^{\circ} \mathrm{C}$. Vibration should be kept to a minimum and the product should

5.1 Case Dimension and Panel Cut Out

5.2 Wiring

Input connections are made directly to screw-type terminals with indirect
wire perssure wire pressure. Numbering is clearly marked in the plastic moulding. Choice of
cabbe should meet local legulatios. Terminal or both Current and Voltage
inputs inputs will accept upto $3 \mathrm{~mm}^{2} \times 2$ diameter cables.
5.3 Fusing
ded that all voltage lines are fitted with 1 amp HRC fuses. For safety reasons, CT secondary connections should be grounded in accordance with local regulations.

6. Connection Diagrams

Note : Never interchange Neutral connection with Phase

7. Specification

Nomina inputvolage	Thee Phase
	Single Phas $110 \mathrm{~V}_{\mathrm{L}-\mathrm{n}}\left(99 \mathrm{~V}_{\mathrm{L}-\mathrm{n}}\right.$ to $121 \mathrm{~V}_{\mathrm{L}}$) $240 \mathrm{~V}_{\mathrm{L}-\mathrm{n}}\left(216 \mathrm{~V}_{\mathrm{L}-\mathrm{n}}\right.$ to $\left.264 \mathrm{~V}_{\mathrm{L}-\mathrm{n}}\right)$
Max continuous input voltage	For 3 phase 120\% of Rated Value
Input Frequency	45 to 55 Hz
Nominal input volage burden	<15VA per phase
Nominal input urrent Burden	<0.2 Va perphase
Nominal input urrent	54 or 1 A AC m
Max continuous input curent	120 \% Rated Value
Startup curent	0.2% of the rated curent
Max short duraion current input	$20 \times$ Rated Value (for 0.5 seconds)
System CT Primay Ratios	From 5.... 9999 for 5A or From 1.... 9999 for 1A (Programmable by thumbw switches at rear of meter)

Auxiliary Supply
AC Auxiliar Supply

Operating Measuring Ranges

Voltage	Three Phase $110 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}\left(85 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}\right.$ to $\left.130 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}\right)$ $240 \mathrm{~V}_{\text {L-L }}\left(204 \mathrm{~V}_{\text {L-L }}\right.$ to $\left.276 \mathrm{~V}_{\text {L-L }}\right)$ $415 \mathrm{~V}_{\text {L-L }}\left(330 \mathrm{~V}_{\text {L-L }}\right.$ to $\left.470 \mathrm{~V}_{\text {L-L }}\right)$ $440 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}\left(380 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}\right.$ to $\left.495 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}\right)$
	Single Phase $110 \mathrm{~V}_{\mathrm{L}-n}\left(99 \mathrm{~V}_{\mathrm{L}-n}\right.$ to $\left.121 \mathrm{~V}_{\mathrm{L-n}}\right)$ $240 \mathrm{~V}_{\mathrm{L}-\mathrm{n}}\left(216 \mathrm{~V}_{\mathrm{L}-\mathrm{n}}\right.$ to $\left.264 \mathrm{~V}_{\mathrm{L}-\mathrm{n}}\right)$
Current	$5 A(0.25 A$ to $6 A)$ $1 A(0.05 A$ to $1.2 A)$
Freauency	45.55 Hz
Power Factor	0.5 inductive...1.... 0.8 capactive

Active energy kw

Reference Conditions for Accuracy

Reference temperatur	$23^{\circ} \mathrm{C}+2^{\circ} \mathrm{C}$
Input Voltage	$\pm 1 \%$ of Rated Value
Input frequency	$50 \mathrm{~Hz} \pm 0.3 \%$
Input waveiom	Sinusoidal ldistorion fa

LED Indication

$\operatorname{von}(\mathrm{vR}, \mathrm{vr}, \mathrm{vb})$	Three green LED's for Voltage also for knowing Phase sequence error
$\mathrm{I}_{\text {REV (}}(\mathrm{R}, \mathrm{IV}, \mathrm{IB})$	Three RED LED's for indicating reverse connected Current Tra (Import or Export connection)
Impulse Led	Red LED flashing at a rate proportional to measured power. impulse rate $=3200 \mathrm{imp} / \mathrm{kWh}$
Scaing LED (x0.01, x0.1, $\times 10)$	Depending on Thumb wheel setting respectiv RED LED (Multiplier) will glow.
Pulse Output Relay	
Reay	${ }^{1 N 0}$
Switching Voltage \& Curent	$24 \mathrm{~V} \mathrm{ACIDC},, 5 \mathrm{mmp}$.
Retay Consant (pusses KWh)	Refer Table 8 T Tabe 2
Environmental	
Operating temperature	$01055^{\circ} \mathrm{C}$
Storage temperature	-20 to $665^{\circ} \mathrm{C}$
Reative humidity	0...90\% RH
Shock	40 g in 3 planes
Vibation	$10 . .55 \mathrm{~Hz}, 0.15 \mathrm{mmm}$ ampliude
Encosure (frontonly)	IP 54 as per IEC 60529
Enclosure	
syle	96×96 (IN Quadatic)
Material	Polycarbonate Housing elf extinguish \& non dripping as per UL 94 V -0
Terminals	Screw type terminal
Fixing	4 side clamps
Dimension	
Panel Cutut	$92 \mathrm{~mm} \times 92 \mathrm{~mm}$
Weight	Approx. 0.45 kg
Applicable Standards	
Standard	IS 13779, IEC62053-21

8. Connection for Pulse Output :

Rear View of Alpha 45C

Note : It is recommended to use wire with lug for connection with meter

