OPERATING MANUAL

Programmable Dual Output DC Isolator

Operating Instructions

1. Read first and then 2
2. Scope of supply. 3
3. Variants 3
4. Brief description 4
5. Overview of the parts 4
6. Configuration 5
7. Technical data. 6
8. Mounting 9
9. Electrical connections 11
10.Commissioning. 13
11.Maintenance 13
10. Dimensional drawings 13

1. Read first and then

The proper and safe operation of the device assumes that the Operating Instructions are read and the safety warnings given in the various sections are observed.

The device should only be handled by appropriately trained personnel who are familiar within and authorised to work in electrical installations.
2. Scope of Supply

(1) Signal Isolator
(2) Operating Instructions
3. Variants

Auxiliary supply voltage
$60 \ldots . .300 \mathrm{VAC} / \mathrm{DC}$
$20 \ldots . \ldots 0 \mathrm{VAC} / 20 \ldots 60 \mathrm{~V}$ DC

4. Brief description

The purpose of the device is to electrically isolate input, outputs and power supply. The isolator fulfills all requirements and regulation concerning electromagnetic compatibility EMC and safety (IEC61326-1 and IEC 61010-1:2010). The device has one input and provides two independent outputs in an extremely small space.

5. Overview of the parts

Fig. 1 shows those parts of the device which are used for mounting, electrical connections and other operations described in the Operating instructions.

Fig. 1

6. Configuration

The device inputs and outputs can be configured using slide switches.
Table A and B contains the switch position information for the configuration of input and output-1/output-2 respectively. When ever configuration is changed output-1 and output-2 one adjustment must be accomplished using "Z" (Zero) and "S" (Span) potentiometers provided on front panel separately for both the outputs i.e. output-1 and output-2
Refer Fig. 1 Front panel view of device
TABLEA: INPUT RANGE SELECTION

Input	S1	S2	S3	S4
$0 \ldots 20 \mathrm{~mA}$	OFF	OFF	OFF	OFF
$0 \ldots 10 \mathrm{~mA}$	OFF	OFF	OFF	ON
$0 \ldots 24 \mathrm{~mA}$	OFF	OFF	ON	OFF
$4 \ldots 20 \mathrm{~mA}$	OFF	OFF	ON	ON
$0 \ldots 10 \mathrm{~V}$	OFF	ON	OFF	OFF
$0 \ldots . .12 \mathrm{~V}$	OFF	ON	OFF	ON
$0 \ldots 5 \mathrm{~V}$	OFF	ON	ON	OFF
$\ldots \ldots 5 \mathrm{~V}$	OFF	ON	ON	ON

TABLE B: O/P1 \& O/P2 RANGE SELECTION

Output	S1 \& S2	S3	S4
$0 \ldots 10 \mathrm{~mA}$	OFF	OFF	OFF
$0 \ldots 20 \mathrm{~mA}$	OFF	OFF	ON
$2 \ldots 10 \mathrm{~mA}$	OFF	ON	OFF
$4 \ldots 20 \mathrm{~mA}$	OFF	ON	ON
$0 \ldots 5 \mathrm{~V}$	ON	OFF	OFF
$0 \ldots 10 \mathrm{~V}$	ON	OFF	ON
$1 \ldots 5 \mathrm{~V}$	ON	ON	OFF
$2 \ldots 10 \mathrm{~V}$	ON	ON	ON

7. Technical Data
Measuring Input Θ
DC Current :
Standard ranges :
1) $0-20 \mathrm{~mA}$
2) $0-10 \mathrm{~mA}$
3) $4-20 \mathrm{~mA}$
$R_{i} \leq 15.5 \Omega$
4) $0-24 \mathrm{~mA}$
DC Voltage :
Standard ranges:
$\left.\begin{array}{l}\text { 1) } 0-12 \mathrm{~V} \\ \text { 2) } 0-10 \mathrm{~V}\end{array}\right\} \quad R_{l} \geq 100 \mathrm{~K} \Omega$
$\left.\begin{array}{l}\text { 3) } 0-5 \mathrm{~V} \\ \text { 4) } 1-5 \mathrm{~V}\end{array}\right\} R_{i} \geq 60 \mathrm{~K} \Omega$
Measuring outputs $1 \& 2 \bigcirc$
DC current: 1) $2 . .10 \mathrm{~mA}$

$$
\text { 2) } 4 \ldots 20 \mathrm{~mA}
$$

$$
\text { 3) } 0 \ldots . .10 \mathrm{~mA}
$$

$$
\text { 4) } 0 . . .20 \mathrm{~mA}
$$

Burden voltage
External Resistance

DC voltage:

15 V
Rext max. [Ω] = 15V/IAN [mA] I AN = Output circuit full scale value

1) $0 . . .5 \mathrm{~V}$
2) $1 \ldots . .5 \mathrm{~V}$
3) $0 . . .10 \mathrm{~V}$
4) $2 . .10 \mathrm{~V}$

Rext min. $[k \Omega$] $=$ UAN [V]/ 5 mA
UAN $=$ Output circuit full scale value
Residual ripple in Output: < 0.4\% p.p.
Response time: $<50 \mathrm{~ms}$
Current limiter at $R_{e n}=0$: $<42 \mathrm{~mA}$ for voltage output
Voltage limiter at $R_{e x t}=\infty$: $<20 \mathrm{~V}$ for Current output

Power supply H \rightarrow O

Rated operating Voltage: $\quad 60$ to $300 \mathrm{VAC} / D \mathrm{C}$ 20 to 40 VAC / 20 to 60 VDC
Rated operating frequency: $45 \ldots 50-60 \ldots 65 \mathrm{~Hz}$
Power input: $\leq 5 \mathrm{VA}$
Accuracy data (acc. to IEC 60688)

Basic accuracy :

Reference conditions

Ambient temperature
Output burden

Influencing Factors:

Temperature
Burden influence
Longtime drift
Switch- on drift
Installation Data:
Mounting position
Weight
Limit error $\leq \pm 0.2 \%$
Including linearity and
reproducibility errors
$23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Current: $0.5 * R_{\text {ex }}$ max.
Voltage: $2^{*} R_{\text {ox }}$ min.

$$
< \pm 0.1 \% \text { per } 10^{\circ} \mathrm{C}
$$

$< \pm 0.1 \%$
$< \pm 0.3 \% / 12$ months
$< \pm 0.2 \%$
Rail mounting
Approx. 0.25 kg

Connection Terminal:

Connection
Element
Permissible cross section
of the connection lead
Permissible
Vibrations:
Shocks:

Electrical :

Regulation

Electromagnetic Compatibility :
Protection:
Pollution degree:
Electrical standards :
Test voltage :

Conventional Screw type terminal with indirect wire pressure
$\leq 4.0 \mathrm{~mm}^{2}$ single wire or $2 \times 2.5 \mathrm{~mm}^{2}$ fine wire

2 g acc. to EN 60 068-2-6
$3 \times 50 \mathrm{~g}$
2 shocks each in 6 directions
Acc. to EN 60 068-2-27
All circuits (measuring inputs/ insulation measuring outputs/power supply) are electrically insulated

Acc. to IEC 61326-1
For Housing : IP 40
For Terminals : IP 20
2
Acc. to IEC 61010-1 resp. EN 61010-1
-All $3.7 \mathrm{kV}, 50 \mathrm{~Hz} 1 \mathrm{~min}$ (Leakage current 5mA) Measuring inputs versus :
-Measuring outputs 2.3 kV , $50 \mathrm{~Hz} 1 \mathrm{~min} \& \mathrm{O} / \mathrm{P} 1$ to $\mathrm{O} / \mathrm{P} 2$:
$500 \mathrm{~V}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$
-All circuits versus case:
$3.7 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$

Environmental conditions

Climatic rating :
Nominal Range of Use
Operating temperature
Storage temperature
Annual mean
Relative humidity

Climate class 3 acc. to
VDIVDE 3540
$0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ (Usage group II)
$-10 . . .23 . . .55^{\circ} \mathrm{C}$
$-40 . . .70^{\circ} \mathrm{C}$
$\leq 75 \%$

8. Mounting

The Isolator can be mounted on a top-hat rail.

Fig. 2 Top-hat rail Mounting

As the front of the enclosure conforms to IP 40. The terminals of the product should be protected from liquids. Transducer should be mounted in a reasonably stable ambient temperature and where the operating temperature is within the range -10 to $55^{\circ} \mathrm{C}$. Vibration should be kept to a minimum and the product should not be mounted where it will be subjected to excessive direct sunlight.

Caution

1. In the interest of safety and functionality this product must be installed by qualified engineer, abiding by any local regulations.
2. Voltages dangerous to human life are present at some of the terminal connections of this unit. Ensure that all supplies are de-energised before attempting any connection or disconnection.
3. This product do not have internal fuses therefore external fuses must be used to ensure safety under fault conditions.

9. Electrical Connections

Input connections are made directly to screw-type terminals with indirect wire pressure. Choice of cable should meet local regulations. Terminal for Current inputs will accept up to $\leq 4.0 \mathrm{~mm}^{2}$ single wire or $2 \times 2.5 \mathrm{~mm}^{2}$ fine wire.

Make sure that the cables are not live when making the connections!
The 230 V power supply is potentially
dangerous !

Note that, ...
...the data required to perform the electrical insulation task agree with the data on the nameplate of the Isolator \mapsto input E, Θ output $A 1$ \& $A 2$ and \rightarrow ○ power supply H!)
...the total loop resistance connected to the output (receiver plus leads) does not exceed the maximum permissible value $R_{\text {ext }}$ max. See "Measuring Output" in sec. 7. Technical data" for the maximum values of $R_{\text {ex }}$!
...the input and output cables should be twisted pairs and run as far as possible away from heavy current cables!
In all other respects, observe all local regulations when selecting the type of electrical cable and installing them !

Connection	Terminal details	
Measuring Current input	+	-
A)0....24mA	11	10
B) $4 . . .20 \mathrm{~mA}$	12	10
C) $0 . .20 \mathrm{~mA}$	13	10
D)0....10mA	14	10
Measuring Voltage input		
A)1...5V	15	10
B)0...5V	16	10
C)0...12V	17	10
D)0....10V	18	10
Measuring output 1	5	6
Measuring output 2	8	9
Auxiliary supply	1	2

Fig. 3 Front View of Device for electrical Connections

10. Commissioning

Switch on the measuring inputs and the power supply. The green LED lights continuously after switching on.

11. Maintenance

No maintenance is required.

12. Dimensional Drawings

Fig. 4 Side view and Front view

Sifam Tinsley Instrumentation Inc.
3105 Creekside Village Drive, Suite No. 801, Kennesaw, GA 30144 (USA)
Contact No. : +1 4047364903
E-mail Id : psk@sifamtinsley.com
Web : www.sifamtinsley.com

